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Abstract  
 
This memo describes a technique using fast integer arithmetic to match shapes from different sources 
that produce similar 2D output.  The shapes, for example, could be precipitation forecasts from different 
computer forecast models.   In the area of ensemble forecasting, this allows the computation of a mean 
forecast field from ensemble fields that are aligned using this algorithm (field alignment), followed by 
the translation of that mean field to the location described by the minimal translation from all ensemble 
members.  This work was funded by director discretionary funding under ESRL’s Global Systems Division. 
 
 
Introduction 
 
The popular method to establish an area-precipitation ensemble mean (simple field averaging) is 
deficient due to positional errors in model output (Alexander et al. 1998).  This conventional method 
computes an ensemble mean by simply averaging the precipitation amounts at each location from the 
ensemble set of forecasts.  This process results in: 1) a smearing of the precipitation areal coverage due 
to ensemble members placing the precipitation location in different positions within the domain; and 2) 
the reduction in precipitation amplitude(s), since even a slight miss-alignment of precipitation regions 
results in a precipitation magnitude reduction by the process of point numerical averaging – even if each 
forecast had exactly the same shape and amplitude(s) (just different placement).  This is because simple 
averaging does not take into account the possibility that different model output might show similar 
fields but place the precipitation in slightly different locations – so-called position error. 
 
In 2009, an unpublished study by Brad Beechler (ESRL/GSD) explored a new technique that was shown 
to have better performance by using observations (such as radar reflectivity) to aid in field alignment.   
The GSD-developed technique was a considered an “observation dependent” approach and was limited 
to quickly updating observations such as satellite and radar, since observation latency had to be 
considered.   
 
Other approaches, much more comprehensive, have been developed (Ravela et al. 2007) that take into 
account model error, translational shift, rotation, and warping of the fields to arrive at superior 
alignment.  Once fields are better aligned by minimal shifting of the ensemble members, it is reasonable 
to assume the mean of the shifted fields will be a superior solution to unadjusted field average.  
 
The proposed approach here is unsophisticated and meant to be observation independent, very 
efficient, and could even be applied to a 72h forecast ensemble set whereas the GSD method by 
Beechler could not do this because it required observations at the current time.  The other objective was 
to derive a rudimentary field alignment method that was efficient and could run with minimal 
computation.  The technique explored here can be applied to any set of horizontal spatial fields deemed 
representative of some variable; this can be considered a generic solution method applicable to any 
field.  Precipitation is selected only as a “first test” parameter.  The algorithm is developed first and the 
latter part of this memo describes ideas for application. 
 



For this algorithm, the i,j element of each ensemble member is aligned with all others at all (i,j) discrete 
locations.  The minimization that occurs considers all manner of orthogonal shifting from each 
translational set to compute a minimum in alignment without using observation data.  This method is 
based on reduction in “miss match” of forecast amounts as all possible alignments are examined.  The 
only place observations enter the picture would potentially be in validation.  The resulting “shape” by 
this method can change by however the forecasts drive the result, there is no observation constraint.  If 
precipitation areal shapes differ radically in a set of forecast ensemble members (larger or smaller), this 
method will cope with all of those types of changes, producing an ensemble average of the new 
“shape”.  In contrast to observational dependent techniques, this is more robust, and since an integer-
based alignment method makes this technique computationally efficient, the technique could quickly be 
rerun after field outliers were identified.  This discussion will be explored at the end of the memo. 
 
Variational minimization is used to optimally align the ensemble precipitation fields by determining the 
unique translation vector for each field, while maintaining the constraint of minimal translation.  The 
minimized functional is the inverse of the summed product of all translated ensemble members.  The 
derived set of translation vectors has dual use, first in the recovery of the true mean ensemble 
precipitation magnitude, and second in determining the ensemble mean field’s location.   
 
J’, is defined as a maximum functional 
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Where capital symbols A, B, C… are translation vectors for each ensemble member corresponding with 
lower case ensemble member fields – (lower case a,b,c…) and gridpoints are defined by i and j.  The 
product of all translated ensembles is summed over all i,j.    No shape considerations are accounted for, 
nor need to be in (1). 
 
The minimization functional is the inverse of J’  

'1/J J (2) 
 
The minimization of J is the maximum of J’ if J’ is greater than zero.  The translation vectors are 
determined such that J-prime is a maximum value that will occur when the set of ensembles is best 
aligned and produce the largest value in overall product precipitation value.  When the best alignment 
of fields is obtained, J will have minimum value and render an optimal set of A,B,C… translation vectors.  
This is how the set of translational vectors set is obtained.   Will J ever be singular? – Only if there is no 
precipitation anywhere in one ensemble member.  That would be a pretest and would be avoided or a 
small non-zero value assigned to all zero points.  This action would not affect J minimization. 
 
The set of translation vectors are used in the averaging process to establish the shape and magnitude of 
the mean precipitation area.  Specifically, the averaging is done after each ensemble member is 
translated to its optimal alignment location, as defined by the set of translation vectors derived from the 
above minimization scheme. 
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The last step is to “place, or locate” the mean precipitation field [from (3) above - just computed] to the 
“ensemble location.”  This is accomplished by averaging the set of translation vectors computed by 
minimization, then applying this one translation vector to the mean precipitation field established in the 
averaging step (3). 
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The result translated ensemble mean is then defined as: 
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At this point, the technique has been presented.  The discussion will go beyond this stage however, 
describing some of the additional applications of the technique and explaining the technique step-by-
step.  For example, the translation vectors could be statistically assessed for their dispersive 
characteristics to ascertain information about the ensembles in general (whether there was good 
agreement, poor agreement, or contained statistically significant outliers).   The minimization functional 
(1) and (2) could incorporate bias corrections depending on the model used for a specific ensemble 
member (for cases where the ensemble set comprises different models).   The latter item mentioned is 
not a part of this technical memorandum, but illustrates the potential it serves for follow-on work if the 
new method for ensemble mean forecasts proves effective. 
 
Computational Approach 
 
Initially, it was envisioned that (2) could be minimized by using a package, such as the Powell (1962) 
method, that has been used successfully in the past for humidity solutions using a 1DVar approach.  This 
is currently documented in the LAPS system (Birkenheuer 2006).  It was discovered that the functional 
was not easily transformed into a method sought to iterate on discrete index values (integers), but 
worked best for a numerical solution of rational numbers.  Therefore, a new approach was designed for 
discrete minimization, and it was devised particularly for this 2-D problem.  Solving this problem in a 
discrete manner simplifies it greatly with the limitation that the integral solution is as close as can be 
obtained.   However, considering that the data is only as good (in resolution) as the density of the 
gridded field, this is a reasonable result.  One approach to obtaining better resolution in the result would 
be to use denser grid spacing and still rely on finite mathematics to achieve the result.  One must also 
realize that even if a rational result were computed, it could be argued that the accuracy of that result’s 
translated position might only be as good as the parent grid resolution. 



 
Sliding windows – a fast minimization solving algorithm using integer computation 
 
A scheme was eventually invented in which the fields would be centered in a larger array that was 
exactly 2x larger the given field, referred to as the reference-field.  Figure 1 shows such a configuration 
graphically. 
 

 
 
Fig. 1. An illustration of one field (domain a) placed into a larger field  (light blue) referred to here as a 
reference-field, which would allow other fields to slide over it in roughly 50% of the possible i,j 
configurations.  There is no reason to slide the window further since that would mean the precipitation 
field would be over ½ a domain away from the centered reference-field, which would be an unlikely 
solution with current model precision.   Here both domain a and b have a “feature” (star) and they are 
aligned as domain b is slid over the reference domain, revealing delta-x and delta-y that define a 
displacement vector that corresponds to differences in i and j values. 
 
The algorithm is to take the information from performing what is done in Fig. 1 with all fields in the 
ensemble against the first domain (or domain “a”), and then working out the set of translation vectors 
used in (1), (3), and (4).  This minimizes (2) and works out the translation vectors simultaneously.  The 
best way to illustrate the algorithm is with the following algebra looking in only one dimension (x, or the 
i direction).  Since this is orthogonal, the same algorithm can be used identically in the other dimension 
(y, or the j direction).  This can be referred to as a rudimentary displacement solution.  A minimization 
approach allows the ability to weight the terms differently to serve specific purposes. 
 



The algorithm 
 
Imagine n fields, and to make it easier, these are 1-dimentional features in the x (i direction).  In an ideal 
case, each contains an identical feature, but at a different location in x, or with a different integral index 
location i.  Assume that i=0 is a reference “first field” and other fields are related to this field to generate 
delta values comparable to delta-x in Fig. 1.  The objective is to identify delta vectors for each field to 
move them the minimal amount so you can align them.   
 
The process begins by not moving (or aligning the first location to itself), which is known to maximize the 
fit in (2).    

1 1 1 0x x x (6) 

The delta x for the second field can be defined as  

2 2 1x x x (7) 

Or generally stated, 

1n nx x x (8) 

The next step is to determine the average delta, and computing this for an arbitrary number of cases.  
Note that this always includes the first term that is zero. 
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The final step is to move the individual fields (now including the first field) to the minimized weighted 
location, thus simultaneously solving (2), minimizing the functional, and determining the vectors.  This 
step breaks into two parts.  The first part computes primed quantities, and these are different for the 
first field and all of the others rendering displacements. The second part uses the displacements to 
determine translation vectors.  The first field (reference field) is moved toward all of the others, and the 
other fields toward the first field. 
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And following for the other fields 
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The DeltaPrime values are in fact the translation vector component in the x direction desired in (1) and 
(2).   
 
The one-dimensional development can now be expanded to two dimensions. Performing the 
computations in (6) through (11) similarly in the y direction, when coupled with the x direction results, 
give us the 2-dimensional translation vectors. 
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Likewise, to preserve the notation in (1) 
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And so forth for vectors C, D, and E to the nth member.  To translate the fields for computing the 
ensemble mean (3), the place to move field n in the x direction becomes, 
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There are a few details to mention before the description is complete.  First, instead of working in x or y, 
computations are in i and j (integers).  Second, when (9) is computed, it is generated from integers in the 
formulation here such that the fraction will become a rational number, and more than likely not be an 
integer .   Since the grid translates by an integral amount, the mean delta (translation) term in (9) is 
assigned the nearest integer.  This allows for discrete field translation.   
 
Discrete field translation is accomplished as in Fig. 1, but for all fields as they are placed in the center of 
a 2x larger field and translated in i and j within that larger field.  When this is done for all member fields, 
the 2x larger fields are averaged per (3).  Then the center of the mean large 2x field, corresponding to 
the original domain, is used for the mean result.  The result corresponds exactly to the initial domain, 
but now contains the mean ensemble values averaged and relocated to their optimal position. 
 
The reference-field framework allowed the preservation of each field and subsequent realignment of 
each field.  By beginning with field 1 (arbitrary - but maintained as the reference-field throughout the 
process) being centered into the reference-field, we provide a comparison framework.  By manipulating 
field 2 to all i,j positions with respect to the reference-field, the functional (2) can be computed at each 
position and its minimum value recorded.  Then the same reference-field is applied against the next field 
(field 3) and the minimization for that field is repeated, recording that aligned position and so forth, 
continuing in-kind with all n fields.   
 
When all of the fields are best “aligned” to the reference-field, a set of translation i,j  values satisfying 
the criteria defined by (10) and (11) are derived, and the minimal displacement to align all fields are 
computed as the vector average of all of the individual field displacements.  The displacement vectors 
i.e., 12, 13 are applied as in (3), and this renders the ensemble mean and location.   
 
Three-field minimization example 
 
Figure 2 shows a three-field minimization example plotting the minimum functional value as an 
incremental alignment search occurs.  Here, the decrease during the iterative search for the “best” 
alignment of fields 1 and 2 extends from iteration 1 through about 2500.  The plot then shows the 
minimizing process repeated for fields 1 and 3. This comprises the second part of the plot from iteration 
2500 to the end (about 5000).  Both field comparisons reached a minimum value, but the second pair, 1 
and 3, has a lower minimum result. 
 



 
 

Fig. 2. A plot showing the minimization of the J functional as a function of iteration for two cases.  It  is 
showing the comparison between two sequential solutions, fields 1 and 2, and fields 1 and 3, during the 
processing.   Here field 1 was treated as the reference-field.   The plotted value is not the functional at 
that iteration, but rather the minimum value achieved up to that and including that iteration, thus 
showing minimization convergence over time.  Each derived minima are independent.  At iteration 
~1000, the minimum occurs for the first pair, and the displacement for that pair remains constant for 
subsequent iterations to the final one (~2500).  At iteration ~2501, the minimization for the second pair 
begins.  At iteration ~3500, the minimum for the second pair occurs, and remains constant until the end 
of the run.   In this example, the second pair of fields (1,3) was a better match because it produced a 
minimum with a lower value.  If field 1 and field n happened to be exactly the same, then J (2) would be 
the smallest achievable number, and the shift of field n would be (0,0), placing it directly over the 
reference-field center, or aligned exactly with field 1. 
 



As shown in Fig. 2, all possible displacements are examined, and when finished, the best alignment 
displacement of each field (2 to n) individually compared to field 1, the “reference-field,” is discovered. 
 
It is apparent in Fig. 2 that a speedup of the algorithm is potentially possible.  Since the precipitation 
fields will generally be somewhat similar to each other, the best match will occur near the “central” 
iteration.  It may be safe to assume that once that iteration has occurred and the function has not 
changed for several hundred subsequent iterations, that the solution has likely been found.  
Termination of the search at that point may be possible with CPU time savings.  This assumption only 
holds if the fields are similar and the precipitation area remains localized in all fields. 
 
Also apparent in Fig. 2 is the fact that the second pair was a better match with the given functional 
constraints defined by (2), since the minimum was less.  This fact can be used with a large number of 
ensemble members to gauge the “set of best fits” when used with the displacement vector set.  The 
minima and displacement vector “outliers” could be used as criteria to discard an ensemble member if it 
was deemed to be “too far away” from the solution cluster.  Certainly not all problems lend themselves 
to this outlier treatment, but if one is desired, it is an objective way to determine and discard unwanted 
ensemble solutions.  It should also be mentioned for such cases that it would not be that the smallest 
minimum would potentially represent a cluster (since all are compared to field 1), but rather the “most 
popular” minimum value.  For example, if you had 6 fields and 4 paired minima were at a value near 0.2 
and the 5th pair produced a minimum of 0.1, the 4 pairs at 0.2 would be deemed the “cluster” in regards 
to minimization, not because they were of the lowest value, but because they were of similar value. 
 
The discrete advantage of this solution is in part due to the integral number of solutions.  The problem is 
constrained to a finite number of known alignment configurations for the different fields, and a discrete 
(not rational) displacement is sought.  Thus the problem is quite limited and tractable by today’s high-
speed CPU computing machines.  This is a brute force approach, with the best solution within easy 
grasp.  If two truly equal minima are computed during this sliding window solution approach, it really 
does not matter which one to use. They are both equally valid.  In this case, constraints could be placed 
on the solution that resolved the conflict, such as accepting the minimum translation result as superior. 
 
Simple case – artificial data 
 
Several artificial data cases were created and tested on the algorithm to assure its proper functioning.  
The first actually was a single point in the field assigned a value of 1.0 in a field of 0.0 values at all other 
locations.  Three fields were set up, with the unity point at different locations in each.  The algorithm 
ran, aligned each field, and then produced a relocated ensemble mean location and value.  This was 
computed both by the algorithm and manually to assure the code worked. 
 
Following this test, a more challenging test was run and presented below.  In this case, a function was 
created both in x and y that resulted in maxima and minima in the 2D field with different magnitudes.  
The field was not allowed to go negative. Where the function had negative values, 0.0 values were 
imposed.  This resulted in a pseudo-precipitation field with a distribution of differing max and min 
precipitation areas with dry regions between them.   The function used is shown in Fig. 3. 
 



 
Fig. 3.  The 1D continuous function used to simulate maximum, sub-maximum, and zero regions of 
precipitation.  When used as a function in both the x and y directions (i and j), this yielded the 2D fields 
shown in subsequent figures.  This function was designed for a 50x50 grid, so values are plotted ranging 
from 1 to 50.  Values less than zero were assigned a zero value, simulating precipitation peaks that 
ranged from ~1.25 to a little under 2.  One must keep in mind that the function was discritized to integral 
values at grid locations, thus true maxima amplitude and locations of both maxima and zero regions 
could differ slightly than plotted here. 
 
The function in Fig. 3 could then be used in both x and y directions to render 2D fields of precipitation 
with varying amplitudes in the pseudo-precipitation areas.  The arbitrary unit of inches was used for the 



amplitude, so in this example just about 2 inches of precipitation was simulated by this function.  
Figure 3 is shown for i and it was also used in the j direction in the following plots.  
 

 
Fig. 4.  Contour plot of the first of three pseudo-precipitation plots generated using the function shown in Fig. 
3.  The same function is used in the i,j directions with the following assignments.  It is easy to see that there 
are several peaks and valleys and also extensive regions of no precipitation.  The gray-scale is darker where 
there is greater precipitation and the gray-scale extends from zero (white) to 2.75 (black).  The precipitation 
regions are also contoured in blue.  In this plot, the equations for each location are based on Fig. 3, but are 
specifically based on: Z = Pos(cos[(25-i)*0.1]+cos[(32-i)*0.3] * cos[(25-j)*0.1]+cos[(32-j)*0.3] ), where the 
“Pos” function returns only positive values with negative values forced to 0.0. 
 
 



 
 
Fig. 5. As in Fig. 4, but with a different i,j displacement value so as to shift the plot as shown.  Here: 
Z = Pos(cos[(20-i)*0.1]+cos[(27-i)*0.3] * cos[(20-j)*0.1]+cos[(27-j)*0.3] ). 
 



 
 
Fig. 6. As in Figs. 4 and 5 but of yet another offset in i, and j.  Here: Z = Pos(cos[(19-i)*0.1]+cos[(26-i)*0.3] 
* cos[(25-j)*0.1]+cos[(32-j)*0.3] ). This looks much like Fig. 5, but is shifted “up” and very slightly to the 
left (by one index). 
 
Using the three examples shown as pseudo precipitation fields, the algorithm was applied to both to 
establish the average location of the resulting field. This was done by measuring the displacement 
vectors, moving field 2 to field 1 and then field 3 to 1, then determining the minimum average 
displacement for all three vectors and applying the respective translations to each field.  The numerical 
average was then applied to the summed result. 
 



 
Fig. 7. Location and magnitude of the shifted and averaged result.  Shown is the performance of the 
algorithm run on the three prior fields. 
 
Fig. 7 maintains the dominant features of the displaced pattern.  The location of the result does not align 
with any of the parent fields but is the mean location.  The structure is fully maintained both in the 
amplitude and spacing of the features.  Discrepancies do appear near the boundary of the domain 
where the most differences occur, due to the shifting inward of “no-data” or removal of data when it 
was shifted to a location outside of the domain.  It would be possible to adjust the algorithm to ignore 
“zero” data that was translated inward from outside the domain.   
 
To contrast this result with a simple average of the three fields, the following is a simple contoured 
average of the three. 
 



 
Fig. 8.  Simple average of the three input fields shown in Figs. 3, 4, and 5 without regard for finding 
optimal alignment.   
 
It is obvious when comparing Fig. 8 to all of the other fields (Figs. 4-7) that it is an inferior representation 
of any of the pseudo-precipitation fields as an average. It does tend to draw the peaks and valleys to the 
more optimal locations shown in Fig. 7, but that is because the alignment before averaging is inferior, 
the structure is “smeared,” and the amplitudes of the peaks are reduced.  This is because by averaging 
the fields in which the peaks had not been aligned, some averaging takes into account regions of lower 
amplitude, thus giving a lower mean result.   
 
The above pseudo-precipitation example illustrates that the alignment and averaging after alignment 
technique renders a superior ensemble average – at least in so far as an averaged displaced field.  Figure 
7 maintains the shapes and amplitudes of the input images, while shifting the majority of the field to an 
“average” location that is the location of the “minimal” shift of all fields. 
 
As an ensemble post processing average, this appears to be the ideal solution.  Recall that the full 
capabilities of the functional (1) can be modified in such a way as to render solutions that may favor 
other attributes that are deemed desirable in a solution, since this is a minimized functional.  It is 
generally easy to modify such a functional to favor specific goals.  For example, in this illustration, (1) 
was maximized to insure that the result aligned the peak amplitudes of the different fields.  One could 
focus on major peaks by squaring each field (15).   
 



' 2 2 2( ) ( ) ( ) ...ij ij ij

i j

J A a B b C c
(15) 

 
 
Thus, the solution would focus more on the extreme peaks and lessen the importance of smaller peaks.    
Also, data could be filtered before applying (1) such that small amounts of precipitation less than a given 
threshold would be forced to zero before the alignment.  Then the true fields can later be restored for 
computing the ensemble average, but using the alignment criteria determined from the modified fields.  
This enables focusing the minimization to use the major precipitation maxima to dominate the 
alignment step.   
 
The functional is only one way this can be modified.  Another could be weighting specific microphysics 
packages over others in the field averaging step.  Thus the displacement and mean location of the final 
field could be determined by all members equally, but the ensemble average would be weighted in favor 
of preferred microphysics schemes. 
 
One could also perform a filter of the solutions as discussed following the explanation of Fig. 2, such that 
“outlier” members could be removed and a new ensemble average computed with the remaining 
members.  This would focus more on the cluster of the resulting members.  The member exclusion 
criteria could be devised in numerous ways, with different thresholds designed to satisfy specific 
probability levels as an example.  Taking this one step further, cluster solutions could be identified.  Each 
cluster could satisfy some pre-determined location-specific criterion.  This could reveal different solution 
regimes that might be worth considering. 
 
Weights could also be assigned by location, giving more influence to results that occurred in a specific 
locale.  Such might be a way to tune the ensemble average to force adherence to orographic 
considerations that might be known. 
 
The knowledge of agreement or how things translate to a result can be used in reverse to understand 
what is working and what is not working.  This above tool can be used to verify ensembles.  One can 
compute a new j functional as a match to the verifying observation field.  Running the above algorithm 
on all ensemble members, where the observation set is taken at “field 1” or the reference field, will 
result in computation of j minimizations (Fig. 2) for each ensemble member paired with observation.  In 
a verification setup case, the discovered j with the lowest value will be the ensemble member that 
verifies the best against the reference field.  This knowledge could be useful in understanding which 
members do consistently well, and perhaps would be an efficient verification tool. 
 
Summary 
 
The major accomplishment of this activity was to approach the ensemble average as a solution to a 
minimized functional.   Secondly, the established mechanism for solution was to switch from a method 
that solved for rational numbers to one that worked in a suitable, but far simpler, subspace of integers.   
The algorithm was written in FORTRAN 77 and demonstrated desired results in a test case. 
 
Realizing that a rational solution would likely be rounded to the nearest integer to preserve the grid 
coordinate system of the solution and avoiding interpolation cost, the entire solution process could be 



done much more simply and computationally economically using the brute force integer solution 
technique shown here.  If integral gridded solutions prove too coarse, a better option is to use denser 
grids, the likely trajectory of future model and assimilation methods. Then the integer solution remains 
more favored, since there will be less and less need to even consider reanalysis and mapping back to a 
coarser grid.    
 
The author does not claim that the integer solution method shown here is the most optimal. It may only 
be one of several ways to solve the problem.  However, by keeping the problem to one of shifting a grid 
by integral amounts, any discrete method can be numerically cheaper, while remaining very robust 
when compared to a rational solution. 
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Appendix 1:  Software listing 
 
Subroutines minimize displacement and funct are used to discover alignment and define the functional 
respectively.  The software presented here is the code used to solve the minimization and produce the 
examples shown in Figs. 4-8.  Source code can be downloaded from: 
 
http://laps.noaa.gov/birk/misc/driver3v3.f 
 
 
 
 
 

http://laps.noaa.gov/birk/misc/driver3v3.f


 



 



 



 



 



 



 



 



 



 



 





 


